Keynote Speaker Ⅰ
Prof. Huiyu Zhou
School of Computing and Mathematical Sciences
University of Leicester, UK
Biography: Dr. Huiyu Zhou received a Bachelor of Engineering degree in Radio Technology from Huazhong University of Science and Technology of China, and a Master of Science degree in Biomedical Engineering from University of Dundee of United Kingdom, respectively. He was awarded a Doctor of Philosophy degree in Computer Vision from Heriot-Watt University, Edinburgh, United Kingdom. Dr. Zhou currently is a full Professor at School of Computing and Mathematical Sciences, University of Leicester, United Kingdom. He has published over 380 peer-reviewed papers in the field. He was the recipient of "CVIU 2012 Most Cited Paper Award", “MIUA 2020 Best Paper Award”, “ICPRAM 2016 Best Paper Award” and was nominated for “ICPRAM 2017 Best Student Paper Award” and "MBEC 2006 Nightingale Prize". His research work has been or is being supported by UK EPSRC, ESRC, AHRC, MRC, EU, Royal Society, Leverhulme Trust, Invest NI, Puffin Trust, Alzheimer’s Research UK, Invest NI and industry. Homepage: https://www2.le.ac.uk/departments/informatics/people/huiyu-zhou.
Speech Title: New artificial intelligence technologies in healthcare
Abstract: Artificial intelligence has significantly influenced the health sector for years by delivering novel assistive technologies from robotic surgery to versatile biosensors that enable remote diagnosis and efficient treatment. While the COVID-19 pandemic is devastating, the uses of AI in the healthcare sector are dramatically increasing and it is a critical time to look at its impact in different aspects. In this talk, I will introduce the application of new deep learning models in medical image understanding. Then, I will discuss Parkinson’s disease (PD) whilst investigating the behaviour analysis of PD mice. I also present the use of machine learning technologies in sentiment analysis, followed by the discussion on several challenges.
Keynote Speaker Ⅱ
Prof. Zhu Han
ECE Department and CS Department, University of Houston
Biography: Zhu Han received the B.S. degree in electronic engineering from Tsinghua University, in 1997, and the M.S. and Ph.D. degrees in electrical engineering from the University of Maryland, College Park, in 1999 and 2003, respectively. From 2000 to 2002, he was an R&D Engineer of JDSU, Germantown, Maryland. From 2003 to 2006, he was a Research Associate at the University of Maryland. From 2006 to 2008, he was an assistant professor in Boise State University, Idaho. Currently, he is a John and Rebecca Moores Professor in Electrical and Computer Engineering Department as well as Computer Science Department at University of Houston, Texas. His research interests include security, wireless resource allocation and management, wireless communication and networking, game theory, and wireless multimedia. Dr. Han is an NSF CAREER award recipient of 2010. Dr. Han has several IEEE conference best paper awards, and winner of 2011 IEEE Fred W. Ellersick Prize, 2015 EURASIP Best Paper Award for the Journal on Advances in Signal Processing and 2016 IEEE Leonard G. Abraham Prize in the field of Communication Systems (Best Paper Award for IEEE Journal on Selected Areas on Communications). Dr. Han is the winner 2021 IEEE Kiyo Tomiyasu Award. He has been an IEEE fellow since 2014, AAAS fellow since 2020 and IEEE Distinguished Lecturer from 2015 to 2018. Dr. Han is a 1% highly cited researcher according to Web of Science since 2017.
Speech Title: Federated Learning and Analysis with Multi-access Edge Computing
Abstract: In recent years, mobile devices are equipped with increasingly advanced computing capabilities, which opens up countless possibilities for meaningful applications. Traditional cloud-based Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, multi-access edge computing (MEC) has been proposed to bring intelligence closer to the edge, where data is originally generated. However, conventional edge ML technologies still require personal data to be shared with edge servers. Recently, in light of increasing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train a local ML model required by the server. The end devices then send the local model updates instead of raw data to the server for aggregation. FL can serve as enabling technology in MEC since it enables the collaborative training of an ML model and also enables ML for mobile edge network optimization. However, in a large-scale and complex mobile edge network, FL still faces implementation challenges with regard to communication costs and resource allocation. In this talk, we begin with an introduction to the background and fundamentals of FL. Then, we discuss several potential challenges for FL implementation. In addition, we study the extension to Federated Analysis (FA) with potential applications.
Keynote Speaker Ⅲ
Prof. Sven Koenig
Dean's Professor of Computer Science at the University of Southern California
AAAI fellow, ACM fellow, IEEE fellow, AAAS fellow, University of Southern California
Biography: Sven Koenig is Dean's Professor of Computer Science at the University of Southern California. Most of his research centers around techniques for decision making (planning and learning) that enable single situated agents (such as robots or decision-support systems) and teams of agents to act intelligently in their environments and exhibit goal-directed behavior in real-time, even if they have only incomplete knowledge of their environment, imperfect abilities to manipulate it, limited or noisy perception or insufficient reasoning speed. Sven is a fellow of the Association for the Advancement of Artificial Intelligence (AAAI), the Association for Computing Machinery (ACM), the Institute of Electrical and Electronics Engineers (IEEE), and the American Association for the Advancement of Science (AAAS). Additional information about Sven can be found on his webpages: idm-lab.org. Email address: skoenig@usc.edu, idm-lab.org.
Speech Title: Robot Planning for Automated Warehouses and Sorting Centers
Abstract: The coordination of robots and other agents becomes more and more important for industry. For example, on the order of one thousand robots already navigate autonomously in Amazon fulfillment centers to move inventory pods all the way from their storage locations to the picking stations that need the products they store (and vice versa). Optimal and even some approximately optimal path planning for these robots is NP-hard, yet one must find high-quality collision-free paths for them in real-time. Algorithms for such multi-agent path-finding problems have been studied in robotics and theoretical computer science for a longer time but are insufficient since they are either fast but of insufficient solution quality or of good solution quality but too slow. In this talk, I will discuss different variants of multi-agent path-finding problems, cool ideas for both solving them and executing the resulting plans robustly, and several of their applications, including warehousing, sorting, manufacturing, and autonomous driving. I will also discuss how three Ph.D. students from my research group and one Ph.D. student from a collaborating research group at Monash University used multi-agent path-finding technology to win the NeurIPS-20 Flatland train scheduling competition.Our research on this topic has been funded by both NSF and Amazon Robotics.
CFAIS Past Speakers
![]() | ![]() |
Prof. Sergei Gorlatch University of Muenster Germany 德国明斯特大学 | Prof. Ahmad P. Tafti University of Southern Maine 南缅因大学 |